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Abstract

The potential role of soil moisture initialization in seasonal forecasting

is illustrated through ensembles of simulations with the NASA Seasonal-to-

Interannual Prediction Project (NSIPP) model. For each boreal summer

during 1997-2001, we generated two 16-member ensembles of 3-month simu-

lations. The first, "AMIP-style" ensemble establishes the degree to which a

perfect prediction of SSTs would contribute to the seasonal prediction of pre-

cipitation and temperature over continents. The second ensemble is identical

to the first, except that the land surface is also initialized with "realistic"

soil moisture contents through the continuous prior application (within GCM

simulations leading up to the start of the forecast period) of a daily obser-

vational precipitation data set and the associated avoidance of model drift

through the scaling of all surface prognostic variables. A comparison of the

two ensembles shows that soil moisture initialization has a statistically sig-

nificant impact on summertime precipitation and temperature over only a

handful of continental regions. These regions agree, to first order, with re-

gions that satisfy three conditions: (1) a tendency toward large initial soil

moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture,

and (3) a strong sensitivity of precipitation to evaporation. The degree to

which the initialization improves forecasts relative to observations is mixed,

reflecting a critical need for the continued development of model parameter-

izations and data analysis strategies.



1 Introduction

Standard weather forecasts, which are based on the initialization of atmo-

spheric variables in a numerical weather model, may extend out to about a

week. Longer-lead forecasts are prevented by the chaotic nature of the at-

mosphere and the associated high speed with which atmospheric anomalies

dissipate. The prediction of precipitation and temperature on seasonal to

interannual timescales thus requires a different strategy: the seasonal predic-

tion of "slower" components of Earth's climate system and a proper account-

ing of the atmosphere's response to these slower components. If, for example,

we can predict a sea surface temperature (SST) anomaly field six months in

advance, and if we know that the atmosphere responds in a characteristic

way to this anomaly field, then some aspects of atmospheric behavior are

predictable at six months.

The modeling and prediction of SSTs has been the main staple of sea-

sonal forecasting efforts for some time (Shukla et al., 2000). This focus is

appropriate, since SSTs are known to affect tropical and winter midlatitude

meteorology, and they appear to be predictable a year or more in advance.

The impact of SST fields on atmospheric properties in summer midlatitudes,

however, appears quite small in various modeling studies (Kumar and Hoer-

ling, 1995; Trenberth et al., 1998; Shukla, 1998; Koster et al., 2000). In fact,

some studies show that in midlatitude summer, another "slow" component

of Earth's climate system, soil moisture, dominates over SSTs in control-
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ling continental precipitation (Koster et al., 2000). The implication is that

the proper useof soil moisturedata in a forecastsystemmay, under certain

circumstances, increase seasonal forecast skill.

Soil moisture data, however, are typically not employed in operational

seasonal forecast systems. This is partly due to a dearth of relevant ob-

servational datasets and partly to a still limited understanding of the role

soil moisture plays in seasonal prediction. Fortunately, the first limitation

is being addressed by various ongoing land data assimilation efforts (e.g.,

Mitchell et al., 1999; Rodell et al., submitted), in which land surface models

estimate soil moisture indirectly through their integration of observed pre-

cipitation and other forcing data. These efforts may someday be enhanced

by the direct use of global, satellite-based estimates of soil moisture.

The second limitation - our limited understanding of soil moisture's im-

pact - has been addressed by several recent atmospheric general circulation

(AGCM) studies. These studies address many different aspects of the prob-

lem, as indicated by the following broad categorization. The examples listed

within each category are not exhaustive.

(i) Impact of "perfectly forecasted" soil moisture on the simulation of ob-

served extreme events. Studies by Atlas et al. (1993), Schubert (see Figure

1 of Entekhabi et al., 1999), and Hong and Kalnay (2000) have examined

how the specification of soil moisture in a numerical model affects the simu-

lation of rainfall associated with observed flood or drought conditions. The



studies show that a proper soil moisture boundary condition is essentialto

the proper simulation of the precipitation extremes. Becausethe soil mois-

ture is artificially maintainedat prescribedvaluesthroughout the simulation

period, thesestudies haverelevanceto precipitation forecastingonly if soil

moisture can be predicted into the simulation period - the studies do not

addressthe prediction of soil moisture itself.

(ii) Impact of "perfectly forecasted" soil moisture on the simulation of non-

extreme interannual variations. Studies by Delworth and Manabe (1988,

1989), Koster and Suarez (1995), Koster et al. (2000), Dirmeyer (2000, 2001),

and Douville et al. (2001) have examined the impact of prescribed soil mois-

ture on the interannual variation of model-generated precipitation, without

a specific focus on observed "extreme" years. The upshot of these studies

is that the specification of soil moisture (or evaporation efficiency) does ex-

ert significant control on the generation of precipitation, if only in certain

regions. Koster et al. (2000) found that soil moisture affects precipitation

mostly in the transition zones between arid and humid climates. These stud-

ies do not address the prediction of soil moisture itself, so they too address

only part of the forecast problem.

(iii) Impact of large, idealized soil moisture initial conditions on the evo-

lution of subsequent model precipitation. Many studies have examined how

an initialized soil moisture anomaly affects precipitation in an AGCM (Rind,

1982; Oglesby and Erickson, 1989; Beljaars et al., 1996; Schar et al., 1999).
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Thesestudies do addressthe prediction of soil moisture, sinceit is not pre-

scribedthroughout the forecastperiod - soil moisture and atmosphericvari-

ablesare free to evolve together. Nevertheless,the imposed soil moisture

anomaliesare idealizedand are typically large, with the emphasisoften be-

ing on the establishmentof linkagesbetweenmodel precipitation and soil

moisture rather than on the reproduction of observedprecipitation anoma-

lies. Thesestudies generally find that a large initial soil moisture anomaly

hasa strong impact on subsequentprecipitation.

(iv) Idealized ensemble predictability studies, assuming a "perfect" model.

The studies of Wang and Kumar (1998) and Schlosser and Milly (in press)

exemplify this type of predictability study, in which a set of soil moisture

states that was attained by the model itself in a prior run (as opposed to

a set of arbitrarily chosen anomalies) is used to initialize each member of

an ensemble of parallel simulations. The inter-ensemble divergence of soil

moisture over time and the impacts of this divergence on associated states

and fluxes can provide a quantitative description of memory in the model,

a description that is untainted by model "drift" because it avoids poten-

tially uncharacteristic responses to artificial initial anomalies. Schlosser and

Milly (in press) found significant temperature predictability but an almost

negligible degree of precipitation predictability associated with soil moisture

initialization in the GFDL AGCM.

(v) Impact of "realistic" soil moisture initial conditions on the evolution of



subsequentmodelprecipitation. An alternative to both idealized and model-

generated soil moisture initial conditions are initial conditions inferred from

observations, i.e., initial conditions that are reasonable proxies to the actual

conditions occurring in the years studied. Fennessy and Shukla (1999), for

example, used a proxy soil moisture dataset derived from the European Cen-

tre for Medium-Range Weather Forecasts analysis-forecast system. Douville

and Chauvin (2000) initialized their model with soil moisture estimates de-

rived from the Global Soil Wetness Project, and Viterbo and Betts (1999)

examined the impact of soil moistures derived from ERA-15 reanalysis on

the simulation of the 1993 Mississippi flood. Because forecasted precipita-

tion fields can be compared to what actually happened, these studies allow a

first look at the usefulness of soil moisture initialization in forecasting. The

results, though suggestive and even encouraging, are still limited by the short

data record and other issues, as discussed further in section 6.2 below.

All of these modeling studies, along with various statistically-based stud-

ies (e.g., Huang et al., 1996), contribute toward answering the most im-

portant question of all for seasonal prediction, namely, can an accurate soil

moisture initialization lead to an improved forecast? In the present paper,

we examine this question further with the forecasting system of the NASA

Seasonal-to-Interannual Prediction Project (NSIPP). The approach we ap-

ply is a combination of categories (iv) and (v) above. Ensembles of AGCM

simulations with the same non-idealized, model-consistent initial conditions



for soil moisture provide a quantitative description of how initial anomalies

are "remembered" into the forecastperiod and of how they influencepre-

cipitation and temperature forecasts. The initial conditions used in each

simulatedyear, however,reflect the soil moisture conditionsthat occurredin

nature during that year due to the application (prior to the forecastperiod)

of observedprecipitation rates into the model andthe scalingof the resulting

anomaliesinto model-consistentvalues,as describedin section3.

The main goalsof the paperare twofold: (i) to document,for the NSIPP

system,wheresoil moisture initialization affectsprecipitation and tempera-

ture forecastsduring boreal summer(section4), and (ii) to explain the global

distribution of soil moisture impact in terms of climatological controls - to

providea possiblemeans,in fact, for predicting the impact distribution that

would be obtained with any forecasting system, based solely on its climatol-

ogy (section 5). Note that these two goals could be achieved with an idealized

ensemble-based experiment approach alone (category (iv) above). Because,

however, the soil moisture initializations we use reflect real conditions, the

experiment also lets us examine whether the initialization increases predic-

tive skill (section 6). The improvement will prove to be mixed, setting the

stage for a discussion of our current abilities to take full advantage of soil

moisture initialization in seasonal forecasting.



2 Models Used

The present analysis uses the atmosphere and land components of the NSIPP

forecasting system. The ocean component of the NSIPP system is replaced

by prescribed sea surface temperatures (SSTs), as described in section 3.

The 2 ° x 2.5 ° multi-level primitive equation atmospheric model used by

Koster and Suarez (2001) is used in this analysis as well. The NSIPP-1

AGCM includes penetrative convection with the Relaxed Arakawa-Schubert

scheme (Moorthi and Suarez 1992), Richardson number-dependent fluxes in

the surface layer, and a sophisticated treatment of radiation, including a

recent parameterization of longwave radiation (Chou and Suarez 1996) and

the calibration of the cloud parameterization scheme with ERBE and ISCCP

data. The numerics include fourth-order advection of vorticity and all scalars,

and the atmospheric dynamics are coded as a dynamical core (Suarez and

Takacs 1995). The climatology of this AGCM is described by Bacmeister et

al. (2ooo).

The land surface model (LSM) used with the AGCM is the Mosaic LSM

of Koster and Suarez (1992, 1996), a scheme that separates each grid cell

into subgrid "tiles" based on vegetation class and then performs separate

energy and water balance calculations over each tile. Following the approach

of Sellers et al. (1986), vegetation explicitly affects the balance calculations

within a tile in several ways: (a) stomatal conductance increases during

times of environmental stress, thereby reducing transpiration; (b) vegetation



phenologyhelps determine the albedo and thus the net radiation; and (c)

the "roughness"of the vegetationaffects the transfers of both momentum

and the turbulent fluxes. All tile quantities (evaporation,radiation, etc.) are

aggregatedto grid cell totals prior to performing the analysesbelow.

The total water holding capacity of a tile is an important parameterfor

this study becauseit helpsdeterminesoil moisture memory. Three vertical

soil layers are followed in eachtile: a thin surfacelayer, a root zone layer,

and a deepsoil layer that canstoremoisture and provide it to the root zone

during dry periods. The water holding capacity of these layers varies with

vegetation type. Typically, forest tiles can hold a maximum of about 1500

mm of water, grassland tiles can hold about 620 mm, and bare soil tiles can

hold about 140 mm. For an expanded discussion, the reader is referred to

Koster and Suarez (2001), who provide a global map of "effective" water

holding capacity in the model, i.e., a map of effective grid cell values that

accounts for the different hydrological activity of component tiles.

3 Experiment Design

The analysis of initialization and predictability in the NSIPP-1 AGCM sys-

tem is centered around a number of ensembles of 3-month simulations. In

each simulation, SST fields are prescribed from observations but the atmo-

spheric and land variables evolve together, following the approach used in

the Atmospheric Model Intercomparison Project (AMIP; Gates, 1992). Each
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simulation beginson June 1. Five different boreal summers(1997-2001)are

examined.

For eachof the five summers, two distinct ensemblesare produced: an

"AMIP" ensembleand a "SoilInit" ensemble. These types differ only in the

way the land surface variables are initialized. In the AMIP ensemble, the

initial conditions used for the land variables differ between members. In

the "SoilInit" ensemble, on the other hand, all members are initialized with

the same set of surface conditions, conditions that are considered realistic

because they reflect observed antecedent precipitation. The impact of soil

moisture initialization on forecasted summertime precipitation and temper-

ature is isolated by comparing the fields generated by the two ensembles.

Table 1 provides a summary of all simulations performed, including the

supplemental simulations (the "GPCP" ensemble) used to initialize the SoilInit

ensembles. Specific details regarding the model runs are now provided.

3.1 AMIP Ensembles

Observed monthly SSTs from Reynolds and Smith (1994) allowed NSIPP to

produce a 16-member ensemble of multi-year AMIP-style simulations, that

is, simulations in which these SSTs are prescribed but land and atmospheric

variables evolve together. Half of these simulations had been integrated for

multiple decades prior to 1995, and the other half began in 1995, with land

variables initialized from randomly chosen years of the multi-decade simu-

lations; thus, the impact of spin-up on model behavior in 1997 and beyond
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is negligible. For the presentstudy, we examine "subsetensembles"of the

I6-member AMIP-style ensemble.For eachyear in I997-200I, we extract

the June through August model results from eachensemblemember, thus

producing anensembleof sixteen3-month AMIP simulations. Note that for

any given year, the different ensemblemembershave different (yet model

consistent)land moisture conditions on 1 June.

3.2 GPCP Ensemble

The 5-member "GPCP ensemble" is run for one purpose only - to provide

initial soil moisture conditions for the SoilInit ensembles. The strategy be-

hind each member simulation in the GPCP ensemble is illustrated in Figure

1. First note that in typical AGCM simulations, including the AMIP sim-

ulations discussed above, the atmospheric model drives its LSM at every

time step with values of precipitation, downwelling radiation, surface pres-

sure, near-surface humidity, near surface air temperature, and wind speed.

A GPCP simulation is run in the same way, except for one important differ-

ence - the precipitation computed by the GCM is not allowed to fall on the

land surface. Instead, the land surface is forced by the observed precipitation

for the given day, that is, a precipitation total derived from a daily dataset

produced by the Global Precipitation Climatology Project (GPCP; George

Huffmann, personal communication). This observed precipitation is applied

uniformly over the day; past experience with the Mosaic LSM indicates that

this uniform application will not strongly affect the model's behavior.
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The underlying assumptionof this experimentalset-up is that in nature,

interannual variations in precipitation are, to first order, responsiblefor inter-

annual variations in soil moisture. Variations in radiation, surfacehumidity

and other atmosphericfields may alsohave an impact but areof secondary

importance. Under this assumption, the soil moisture fields that evolve in

the GPCP simulationscanbe consideredthe most "realistic" moisture vari-

ables possiblefor initializing supplementalLSM runs (suchas the SoilInit

ensembles)becausethey reflect realistic antecedentprecipitation and they

are consistent with the LSM's own internal physics.

As of this writing, daily GPCP precipitation data are available for 5 years,

starting in January, 1997. The availability of daily data defines, in fact, the

period over which we perform our analyses. Monthly GPCP precipitation

data, however, are available for many years before this, and we use two years

of these data (1995-1996) to avoid spin-up problems. Daily values for 1995-

1996 are artificially constructed from the monthly values using the temporal

partitioning inherent in the 1997 daily data. At a given grid cell, if P/,m,199r

is the daily precipitation during day i of month m in 1997, and if Pm,19o5 and

P,,_,109r are the monthly precipitation totals for month m of 1995 and 1997,

respectively, then the corresponding daily total for 1995 is taken to be:

Pm,1995 (1)
P/,m,1905 = Pi,m, x00r P, m00r"

This approach, which is similar to that used by Sellers et ai.[1996] to

disaggregate data for the ISLSCP Initiative 1 dataset, produces a time series
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of 1995and 1996precipitation data with reasonabletemporal statistics and

with accuratemonthly means.

We beginthe five GPCP runson 1January 1995(initializing both the at-

mosphereandthe land with 1 January1995conditionsfrom five of the AMIP

runs) and extend them through 1 June 2001. The land surfaceprognostic

variableson a given date areaveragedacrossthe five ensemblemembersto

get a single,best estimateof land surfaceconditions on that date.

3.3 SoilInit Ensembles

The SoilInit ensembles match the AMIP ensembles in size - on each 1 June

during 1997-2001, we begin a 16-member ensemble of 3-month simulations.

The initialization of the land surface prognostic variables is based on the

values for 1 June produced during the GPCP ensemble, while the sixteen sets

of atmospheric initial conditions are taken directly from the AMIP ensembles.

Climate drift prevents us from initializing the land variables directly with

the mean 1 June states from the GPCP ensemble. The problem is that the

mean GCM climate, while realistic to first order, does differ from that of the

real world. Figure 2 illustrates the problem with an exaggerated example.

Consider a hypothetical surface tile with the indicated probability density

functions (pdfs) for soil moisture, across all years. The pdfs for the mean

AGCM climate and for the GPCP ensemble presumably differ because of

large differences in modeled and measured mean precipitation. Now suppose

that during a given year, the GPCP ensemble produced a degree of saturation
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in the soil of 0.5. The 0.5 value clearly reflects a very dry year in the GPCP

ensemble and thus in nature, and yet it would represent a very wet year in

the free-running GCM. If we were to initialize the tile with 0.5 in the SoilInit

ensemble, we would unrealistically initialize it wet.

To address this issue, we use standard normal deviates. At each land

surface tile, we compute the mean (_) and standard deviation (_) of June

1 soil moisture for both the GPCP runs and the AMIP runs, across the 5

years of interest (1997-2001). Then, if the GPCP-based June 1 soil moisture

for a particular year n (averaged over the five ensemble members) is WinaPcP],

the corresponding value - [SonInit] used to initialize the SoilInit ensemble in"¢3Jrt

that year is that which satisfies:

w[SoilInit] w[AMIP]
n

[AMIP] Cy[wGPCP]
Crw

w[GPCP] _ w[GPCP]

(2)

This approach ensures that a dry condition in the GPCP ensemble will trans-

late to a roughly equivalent dry condition in the SoilInit ensemble. It also

helps to prevent climate drift, since the initial conditions produced by (2)

will necessarily be within the realm of the coupled model's own variability.

The same procedure, in fact, is used to initialize all of the land surface

variables. Note that in the regions where the GCM reproduces the atmo-

spheric forcing accurately, the land surface conditions from the GPCP en-

semble are, in effect, used without modification in the initialization of the

SoiIInit runs.
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4 Results: Simulated Memory

Figure 3 shows, for June, July, and August of 1999, differences (SoilInit

minus AMIP) in the ensemble mean fields of soil moisture, precipitation,

and temperature over southern North America. Differences are plotted only

where they are statistically significant at the 95% level, as determined from

a Student's T test. In other words, differences are plotted only where we can

be reasonably sure that initialization has had some impact on the fields.

In this particular year (1999), the land initialization produced a wet soiI

moisture anomaly in the central United States that persisted through June,

July, and August (left column of Figure 3). In much of the eastern and

western United States, the spread of soil moisture values across the SoilInit

ensemble increased enough, even in June, to render the distinction between

the SoilInit and AMIP ensembles insignificant. The impact of soil moisture

initialization on precipitation and temperature is shown in the middle and

right columns, respectively. The areas of impact lie within those identified for

soil moisture. The precipitation and soil moisture anomalies presumably help

maintain each other through feedback. The associated evaporation anomalies

induce the temperature anomalies via latent cooling.

Figure 3 highlights a relatively large impact of soil moisture initialization

on the GCM fields in North America, compared to that seen in other years.

The interannual variability of the impact is suggested in Figure 4, which

shows, for each of the five years, differences (SoilInit minus AMIP) in the
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ensemblemeanprecipitation totals for JJA. Again, the differencesareplotted

only when they are significantat the 95%level. For someyears (e.g., 1997),

soil moisture initialization hasvery little impact on forecastedprecipitation

in North America.

A global compositemeasureof initialization's impact on JJA meansis

shown in Figure 5. The figure wasconstructedby first computing, at each

grid cell and for eachyear n, the probability, 1 - P_, that the initialization

had no impact at all on the variable in question. A Student's T test provided

the necessary values for 1 - "P_, with 1 - 7_n set equal to 1 if the ensembles

were indistinguishable at the 75% level. The product of 1 - P, over all of

the years is thus the probability that the initialization never had an impact

on the variable. The probability, P, that initialization had some impact (at

least once) during the 5 years is thus computed with

2001

P=I- II (1-Pn) (3)
n=1997

Values of 7_ exceeding 99% are shown in the figure for soil moisture, precip-

itation, and temperature.

As might be expected, the impact of initialization on seasonally-averaged

soil moisture is extensive, covering most of the globe. The impacts on

seasonally-averaged precipitation, on the other hand, are much more spa-

tially limited. The main areas of impact for precipitation lie in the center of

the North American continent, to the south and west of the Amazon, in trop-

ical Africa, and across a swath in western Asia centered over the Caspian and
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Black Seas. The areasover which initialization affectsseasonally-averaged

temperature are muchmore extensive,though not as extensiveasthose for

soil moisture.

5 Geographical Variation of Soil Moisture Im-

pact on Precipitation

Koster et al. (2000; see Fig. 13) found that a prescribed soil moisture bound-

ary condition (or more specifically, a prescribed evaporation efficiency) had a

significant impact on precipitation in transition zones between very dry and

very wet climates. The areas they identify are more extensive than those

in the middle panel of Figure 5, for two reasons. First, different versions

of the NSIPP AGCM were used in the two studies, and the climates simu-

lated by the two versions are somewhat different. Second, and much more

important, the fields generated by Koster et al. (2000) show the response

of precipitation to surface boundary conditions, that is, they identify the

regions where precipitation can be predicted if soil moisture itself can be

predicted. Initialization has an impact over a smaller area (middle panel of

Figure 5) simply because the impact requires both (i) this strong response

to land surface boundary conditions and (ii) soil moisture memory. Koster

and Suarez (2001), in their analysis of soil moisture memory in the NSIPP

system, show that memory is small (for example) in southern Asia, the mid-

dle of the Amazon, and the Sahel. Thus, despite the fact that Koster et al.
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(2000) found a significant land-atmosphereconnectionin theseregions, the

impact of initialization there is low.

Thus, oneway to predict thegeographicaldistribution of impact in Figure

5 is to perform experimentssimilar to thosein Koster et al. (2000)and then

scalethe results with a memory factor. Theseexperiments,however,are as

computationally expensiveasthe forecastexperimentsthemselves.We want

to establisha simpler, alternative approach,one that predicts the geograph-

ical distribution of impact from standard AGCM diagnostics- diagnostics

typically availablefrom anypre-existingAGCM simulation, asperformedby

any modeling group. To do this, we identify several factors that underpin

land feedbackon precipitation. In order for feedbackto occur, conditions

conduciveto eachof thesefactors must be adequate.The areasfor which all

conditions areadequatewill beshownto agree,to first order,with the areas

highlighted in the middle panelof Figure 5.

A simple line of reasoningidentifies the factors weconsider. We assume

that in order for soil moisture initialization to have an impact on precipi-

tation, (i) the soil moisture anomaly must be large enoughto begin with,

(ii) evaporationmust be sensitiveto soil moisture, sothat the soil moisture

anomalycan inducean evaporationanomaly,and (iii) precipitation must be

sensitiveto evaporation,so that an evaporation anomalycan induce a pre-

cipitation anomaly. These three factors and their combined effects are now

discussed in turn.
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5.1 Size of Soil Moisture Anomalies

The characteristic size of the initial soil moisture anomalies in the SoilInit

ensemble is measured in terms of the standard deviation, a_, of total soil

water in a grid cell (expressed as a degree of saturation) on the first of

June. Recall that the initial soil moistures used in the ensemble, though

based on observed antecedent precipitation, have been scaled with (2) to be

consistent with the model's climatological means and standard deviations, as

determined from AMIP simulations spanning the five years of study. Thus,

one measure of a_ for the total grid cell soil water could be derived from the

a[AMIP] values used in (2), which correspond to individual water prognosticW

variables in tile space. For logistical reasons, and to ensure an accurate,

independent calculation, we instead estimate a_ by processing the June 1

soil moistures generated in archived multi-decadal NSIPP AGCM simulations

(Koster and Suarez, 2001). Perhaps the most correct value of _w would be

obtained by first determining, for each of a number of calendar years, the

standard deviation of the June 1 moisture generated in an ensemble of parallel

simulations. The standard deviation would then be averaged over the years,

so that a_ would be less likely to reflect interannual SST variations. We

instead use the interannual value because it better represents the type of

data accessible to most modeling groups.

The global field of aw is shown in the top plot of Figure 6. In the NSIPP

system, initial anomalies tend to be especially large in central North America,
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parts of tropical Africa, andsoutheastAsia. They tend to besmall in deserts

and in certain very wet regions (e.g.,the Amazon),wherethe soil moistures

tend to cluster around their minimum and maximum values,respectively.

5.2 Evaporation's Sensitivity to Soil Moisture

Koster and Suarez (2001) show that a simple linear function can approximate

the Mosaic LSM's much more complicated relationship between mean profile

soil moisture, wn, and evaporative fraction En/P_, where En is the time-

averaged evaporation and Rn is the time-averaged net radiation during time

period n. This simple function,

En
-- = cwn+d, (4)
Rn

is determined via linear regression on simulated pairs of En/Rn and Wn val-

ues. Koster and Milly (1997) show that for diagnostic purposes, such an

approximation can be used to characterize the behavior of LSMs in general.

For the present study, we revisit the multi-decadal NSIPP AGCM simula-

tions examined by Koster and Suarez (2001) to obtain "climatological" values

of c and d for the June through August (JJA) period at every grid cell. Each

En/Rn value used in the linear regression is determined from three-month E

and R totals from a particular year of simulation, whereas the corresponding

Wn value is estimated (for various logistical reasons) from instantaneous w

values on June 1, July 1, August 1, and September 1 of the same year.

The derived value of c at each grid cell is then multiplied by the clima-
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tological mean net radiation, R, at that cell (for JJA) to produce a quan-

titative measure of the sensitivity of evaporation itself to soil moisture, one

of the assumed requirements for land-atmosphere feedback. The global field

of cR is shown in the middle panel of Figure 6. The figure indicates that

evaporation is largely insensitive to soil moisture variations in eastern and

northern North America, the eastern half of Asia, Scandinavia, the Amazon,

and tropical Africa north of the equator. Thus, in these regions, we expect

little impact of soil moisture initialization on precipitation.

5.3 Precipitation Sensitivity to Evaporation

Establishing a quantitative measure of the sensitivity of precipitation to evap-

oration is much less straightforward. One simple approach is to consider the

difference between the two types of precipitation generated by the NSIPP-1

AGCM. The first type, moist convective precipitation, results from vertical

air motion induced by moist static instability. Evaporation affects the on-

set of moist convection by influencing the structure and stability (relative to

higher layers) of the atmospheric boundary layer. The second type, large-

scale condensation, results from the horizontal movement of large, moist air

masses into cooler regimes. Since these movements are mostly controlled

by the large-scale atmospheric circulation, local evaporation presumably has

little impact on the triggering of large-scale condensation events.

Under the assumption that only moist convection responds directly to

local evaporation, we use the convective fraction, i.e., the ratio of convec-
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tive precipitation to total precipitation, asa crudemeasureof precipitation's

sensitivity to local evaporation. The convectivefraction isplotted in the bot-

tom panel of Figure 6. Moist convectionis minimal in southern hemisphere

midlatitudes (due to wintertime conditions) and in the far north of northern

hemispherecontinents. Thus, we expect little land-atmospherefeedbackin

theseregions.

5.4 Combined Impact of the Three Factors

Again, all three factors plotted in Figure 6 are assumed critical to the trans-

lation of an initial soil moisture anomaly into a significant precipitation

anomaly. The product of the three factors (aw, oR, and convective frac-

tion) can serve as a crude index of their combined effect, for if any one factor

is small, the product will be small as well. In fact, the product of the first

two, awcR, is essentially a measure of the interannual range of evaporation

rates on the first date of the forecast period. It is thus a measure of the

degree to which the surface energy balance can vary.

The product of the three factors is shown in the top panel of Figure 7. In

North America, the product is high only in the center of the continent. From

Figure 6, low values of the product in the east and north of the continent

stem from a low evaporation sensitivity, whereas low values in the west stem

from a low characteristic size of soil moisture anomalies. The product of c%,

cR, and convective fraction is also high along a swath south of the Amazon,

in tropical Africa below the equator, in a thin swath across central Asia, and
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along the coastof the Bay of Bengal.

The patterns in the top plot of Figure 7canbedirectly comparedto those

in the bottom plot, which showswheresoil moisture initialization did affect

the seasonalprecipitation. (The bottom plot is a repeatof the middle plot in

Figure 5.) A perfectagreementis not expected,giventhe statistical nature of

the test and the limited duration of five yearsfor the analysis.Nevertheless,

the patterns agreequite well, particularly in the western hemisphereand

in central Asia. The agreementin tropical Africa is lesssatisfying but still

adequate.

Overall, the comparison in Figure 7 suggests that the aforementioned

three requirements for an impact of soil moisture initialization on precipi-

tation (namely, that the initial soil moisture anomaly be large enough, that

the evaporation be sensitive to soil moisture, and that the precipitation be

sensitive to evaporation) can indeed be represented together as a product of

three distinct GCM diagnostics (namely, a_, cR, and the convective frac-

tion). This result is especially intriguing because it may provide a simple,

albeit crude, way to characterize seasonal forecast systems in general. Of

course, the robustness of the result over a variety of modeling systems must

yet be demonstrated.
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6

6.1

Usefulness of Soil Moisture Initialization

Evaluation of Forecasts

The preceding sections have quantified the impact of soil moisture initial-

ization on forecasted precipitation and temperature anomalies. As noted in

the introduction, this analysis could have proceeded using any set of model-

consistent initial conditions. A key motivation for our experimental design

(Figure 1), however, is the generation of crude estimates of realistic initial

soil moisture conditions for the SoilInit ensemble, estimates that should allow

a first look at the impact of the initialization on forecast skill. The SoilInit

and AMIP ensemble forecasts can be validated against measured precipita-

tion and temperature during the forecast period to provide a flavor for the

advantages of land initialization.

Figure 8, for example, shows the 1997 JJA precipitation and temperature

anomalies in central Asia for the SoilInit and AMIP ensembles (averaged over

the component members) and for observations. All anomalies are relative to

the means for the 5-year period. Precipitation observations are derived from

the GPCP dataset, and temperature observations are taken from a global

surface meteorology station dataset compiled by the National Climate Data

Center (the "Global Surface Summary of Day Data") and thereafter gridded

by NASA's Data Assimilation Office (M. Bosilovich, personal communica-

tion). For ease of comparison, the anomalies are shown only in those areas

for which the SoilInit and AMIP ensemble-average forecasts differ signifi-
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cantly at the 95%level. Note alsothat observedtemperatureanomaliesare

simply not availablein parts of the southeasternsectionof the map, sothat

a certain amount of "mental interpolation" is neededto fill in the gaps.For

this particular season,the initialization of soil moisture has led to a signifi-

cant improvementin forecastedseasonalprecipitation and temperature over

the westernAsia areasidentified earlierashavingpotential for predictability.

The successseenin Figure 8, however,is not typical, at leastfor the 5-year

data record examined. Figure 9 showsthe oppositeextreme,a particularly

poor forecastof JJA 2001precipitation and temperature in the central U.S.

The inaccurate SoilInit forecastof high precipitation in this region stems

from very wet initial conditionsthere, which in turn stemfrom higher-than-

averageMay 2001 precipitation rates in the GPCP dataset. In other words,

in the real world during 2001, the central U.S. experienced a relatively wet

spring followed by a relatively dry summer, whereas in the model, the wet

spring tended to produce, on average, a wet summer.

Figure 10 summarizes the precipitation forecast results over regions in

North America and western Asia that are known (Figure 5) to be charac-

terized by high potential predictability. In both regions, soil moisture ini-

tialization seems to improve the forecast (at least in terms of reproducing

the direction of the observed anomaly) in 1997 through 1999. The impact

of initialization, however, appears negligible in 2000, and, in agreement with

Fig. 9, initialization led to a poorer forecast over the North American re-
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gion in 2001. Overall, the results are mixed; for the modeling system and

initialization approach used here, and for the short period considered, soil

moisture initialization does not unambiguously lead to an improved seasonal

forecast.

6.2 Context of Experiment

As discussed in section 1, many studies support the idea that accurate soil

moisture initialization may someday improve seasonal precipitation forecasts.

The mixed results in section 6.1 reflect the difficulty associated with meeting

this goal. Showing that precipitation in the NSIPP AGCM is strongly con-

trolled by an artificially maintained soil moisture state (Koster et al., 2000)

and is even influenced by soil moisture initialization (section 4) has proven

much easier than showing conclusively that the initialization improves skill.

The mixed results in section 6.1, however, need not be viewed as pes-

simistic. Rather, they are probably indicative of current needs for improved

model formulations, improved initialization strategies, and a more lengthy

validation dataset. Any number of model and data deficiencies may have

affected the comparisons in Figures 8-10. The following is a partial list:

(i) The model may locate incorrectly its areas of soil moisture initializa-

tion impact. If the locations of significant impact shown in Fig. 5 are

shifted from the true locations (i.e., those operating in the real world)

by even 5 or 10 degrees in latitude or longitude, the model would have
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problems;it might, for example,translate a soilmoistureanomaly into a

precipitation anomalyin a placewherethe land has little impact in the

real world, and in an adjoining region,wheresoil moisture shouldhave

an impact, the model might let atmosphericchaosdominate. Errors in

Fig. 5 could result from an inaccuratesimulation of soil moisture vari-

ability, evaporation sensitivity to soil moisture, or convectivefraction

(seesection5).

(ii) Other modeldeficienciesmay significantly bias the estimation of ini-

tial soil moisture contents, the strength of land-atmospherefeedback,

or other aspectsof Earth's climate systemthat affect forecastskill. In

particular, the AGCM's climatological precipitation fields are imperfect

relative to observations,necessitatingthe useof (2) in the initialization

process. Even if the model's mean precipitation fields were accurate,

antecedentprecipitation anomaliescould overestimateor underestimate

initial soil moisture anomalies if surface processes such as runoff are pa-

rameterized poorly.

(iii) The soil moisture initial conditions used by the ensemble members

are tied to observations, but the atmospheric conditions are not; the

initial atmospheric fields, though consistent with the given year's SSTs,

are culled from AGCM archives rather than from an atmospheric data
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assimilationsystem,asusedin operationalweatherforecasting.In prin-

ciple, taking advantage of predictable weather during the first week or

so of a forecast - taking advantage of slow modes of variability inherent

in the atmospheric fields - could lead to a more reliable soil moisture

boundary condition over the remainder of the forecast period. An inves-

tigation of atmospheric initiMization techniques for seasonal forecasting

is warranted.

(iv) Only variations in observed precipitation are used to set the initial

soil moisture contents. Observed variations in other fields (notably ra-

diation, near-surface temperature, and near surface humidity) prior to

the start of the forecast are ignored but could have an important ef-

fect on soil moisture evolution. In principle, a superior soil moisture

data set for initialization would be produced by a full data assimila-

tion system, one that combines the integration of all available forcing

data (e.g., Mitchell et al., 1999) with the assimilation into the model of

soil moisture observations wherever they exist (e.g., Walker and Houser,

2001). This superior data set might in turn lead to an improved forecast.

(v) The GPCP data are not perfect. Potential errors affect both the ini-

tialization of the soil moisture and the verification of the forecast.
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Each of thesemodel and data deficienciescould leadto a significant de-

creasein forecastskill. Evenif the model and datawereperfect in everyway,

however,we would still facea very difficult problem in evaluation: nature

in this experimentaldesignprovidesonly five "realizations" of precipitation

and temperature fields, not nearly enoughto demonstratestatistically the

successor failure of the approach. This limitation is clearly illustrated in

the top plot of Fig. 11,which comparesthe observedJJA 2001precipitation

anomaly over the central U.S. region in Fig. 10with the anomaliesgener-

atedby the individual membersof the SoilInit ensemble.Recall from Fig. 10

that, for this region and year, soil moisture initialization appearedto have

a particularly negativeimpact on the accuracyof the forecast. Accordingly,

Fig. 11 showsthat most of the SoilInit simulations incorrectly predicted a

wet summer in 2001. Note, however,that a few of the ensemblemembers

do predict a dry summer,even dryer than what actually occurred. Thus,

despite appearancesin Fig. 10, the SoilInit forecast for JJA 2001was not

inconsistent with the observations. The observed dry summer was given a

low, but nonetheless nonzero, probability of occurrence.

The bottom plot in Fig. 11 shows the corresponding histogram for the

June 2001 forecast. In this plot, the observed anomaly lies outside the range

indicated by the SoilInit ensemble, implying that the forecast system is prob-

ably biased, perhaps for the reasons enumerated above. Still, at least one

of the ensemble members produced an anomaly of similar magnitude to the
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observedanomaly,and thus evenfor this morestringent test, the forecast is

not conclusivelywrong. The examplesin Fig. 11underscorethe difficulties

associatedwith evaluating a probabilistic ensembleforecastagainsta small

sampleof observations.The examplesare in somewaysevenpessimistic,for

sucha largespreadin the forecastsmayimply a limited usefulnessof the soil

moisture initialization. Our hopeis that areductionof modelanddata errors

will significantly improve suchcomparisonswith the observations,perhaps

in part by reducingthis spread.

In any case,a proper statistical evaluationwould require a great many

moreyearsof globalprecipitation data,not just monthly data for the summer

validation period but also daily data for the generation of the initial soil

moisture contents. The GPCP daily dataset currently spans the five years

studied here. For a proper statistical analysis, an equivalent dataset covering

several decades (with similar accuracy) would be needed.

7 Summary

We examined ensembles of simulations performed with the NASA Seasonal-

to-Interannual Prediction Project AGCM to determine the impact of soil

moisture initialization on seasonal forecasts of precipitation and temperature.

Through the use of the technique outlined in Figure 1, the initial soil moisture

anomalies in the SoilInit ensemble have "realistic" values for the five years

examined - if, for example, precipitation observations indicate that a region
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experienceda wetter-than-averageMay, then the June 1 initial conditions

for that regionwould beduly wet, in a mannerconsistentwith internal land

surfacemodelphysicsand the AGCM's own meanclimate. Output from the

SoilInit ensemblewas directly compared to that from the AMIP ensemble,

which doesnot makeuseof a specificsoil moisture initialization.

Two main results fall out of this study. First, as shownin Fig. 3-5, the

impact of soil moisture initialization on seasonalprecipitation prediction is

significant over only a small fraction of the globe. Over most of the globe,

the pdf of JJA precipitation derived from a SoilInit ensembleis statistically

indistinguishablefrom that derivedfrom the correspondingAMIP ensemble.

This suggeststhat for seasonalprecipitation prediction, soil moisture infor-

mation will be useful only in certain limited areas.Note, however,that the

impact of soil moisture initialization on seasonaltemperature prediction is

muchmoreextensive,coveringroughly half of Earth's land surface (Fig. 5).

The secondmain result is that an analysisof the forecastsystem's cli-

matology allowsus to predetermine,to a large extent, where soil moisture

initialization shouldhavean impact on the precipitation forecast. Threesen-

siblecriteria for asignificant impact are identified: (i) the initial soil moisture

anomalymust be largeenough;(ii) evaporationmust beadequatelysensitive

to a givensoil moisture anomaly;and (iii) precipitation must be adequately

sensitiveto a givenevaporationanomaly.Diagnostic measuresof thesethree

criteria for the NSIPP systemare combinedin Fig. 7, and the combination
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successfullyreproduces(for the most part) the areasof influenceseenin the

forecastexperiments.This result may havebroad implications. By perform-

ing the samekind of diagnostic analysis, other modeling groups may get

a sensefor wheresoil moisture initialization wilt be important in their own

forecastsystem,prior to performingthe computationally-intensiveensembles

describedin this paper.

Finally, the analysisservesasa springboardfor describingthe difficulties

associatedwith evaluatingsoil moisture-influencedforecastsagainstobserva-

tions. A hint of an improvementin the seasonalforecastsof precipitation and

temperature can arguably be attributed to soil moisture initialization (Fig.

10), but a proper evaluationis renderedimpossibleat this time by an insuf-

ficient data record- a great many moreyearsof data would be required for

a proper statistical analysis. Of course,model and data processingdeficien-

cies,as enumeratedin section6.2, further cloud the comparisons.Our hope

is that the correction of thesedeficiencieswill eventually lead to a clearer

demonstration of the impact of soil moisture initialization on seasonalpre-

dictive skill.
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Figure Captions

Fig. 1 Schematic of the strategy used for the GPCP model runs, which pro-

vide the initial conditions for the SoilInit ensembles.

Fig. 2 Illustration of the impact of climate bias in the GCM, using hypothet-

ical, extreme example. Note that a relatively dry state in the GPCP

ensemble corresponds to a relatively wet state for GCM's mean clima-

tology (in the absence of GPCP forcing).

Fig. 3 Impact of soil moisture initialization on the monthly averaged soil

moisture (left column), precipitation (middle column) and temperature

(right column).

Fig. 4 Impact of soil moisture initialization on JJA precipitation for each of

the five years considered in the experiment.

Fig. 5 Composite maps showing the locations where soil moisture initializa-

tion had a significant impact, at least once during the 5 years studied,

on soil moisture (top), precipitation (middle), and surface temperature

(bottom). Significance is at the 99% level.

Fig. 6 Factors affecting strength of land-atmosphere feedback. Top: charac-

teristic size of initial soil moisture anomaly, as measured by the stan-

dard deviation of total June 1 soil water (in units of degree of satura-

tion). Middle: Product of the mean net radiation and the slope of the
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evaporationratio versussoil moisturerelationship (in W/m2). Bottom:

Convectivefraction (dimensionless).

Fig. 7 Top: Product of the three factors hypothesizedto contribute to soil

moisture initialization's impact on precipitation. Bottom: Compos-

ite map showingthe locations wheresoil moisture initialization had a

significant impact, at leastonceduring the 5 yearsstudied, on precip-

itation. Significanceis at the 99_ level.

Fig. 8 Comparison of JJA precipitation and temperature forecasts with ob-

servations in 1997. Top: forecasted anomalies obtained with SoiIInit

ensemble, that is, with specific soil moisture initialization. Middle:

forecasted anomalies obtained with AMIP ensemble, that is, without

specific soil moisture initialization. Bottom: Observed anomalies.

Fig. 9 Comparison of JJA precipitation and temperature forecasts with ob-

servations in 2001. Top: forecasted anomalies obtained with SoilInit

ensemble, that is, with specific soil moisture initialization. Middle:

forecasted anomalies obtained with AMIP ensemble, that is, without

specific soil moisture initialization. Bottom: Observed anomalies.

Fig. 10 Summary of forecast results over the two indicated regions, one in

central North America (left two columns) and one in western Asia (right

two columns). Shown in the first column of each pair of columns are the

mean JJA precipitation anomaly (in mm day -1) for the SoilInit ensem-
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ble (leftmost bar), the meanJJA precipitation anomaly for the AMIP

ensemble(middle bar), and the observedJJA precipitation anomaly

(crosshatchedbar), for eachyear of study. Shownin the secondcol-

umn of eachpair of columnsare the correspondingvaluesfor the JJA

temperature anomalies(in °K).

Fig. 11 Top: JJA 2001precipitation anomalies(in mm day-i) generated

by the individual membersof the SoilInit ensemble,ranked by size.

The observedprecipitation anomaly is shownasthe crosshatchedbar.

Bottom: Same,but for June 2001precipitation.
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1995
- 1996

1997

1998

1999

2000

2001

AMIP ensembles

16-memberensemble
coveringboth years.

16-memberensemble
continuesthrough
year. We examine

June-Augustperiods
of thesesimulations.

Sameasfor 1997.

Sameasfor 1997.

Sameasfor 1997.

Sameasfor 1997.

"GPCP-style" runs

5-memberensemble
coveringboth years;

monthly GPCP precip.
applied, using arti-

ficial temporal
disaggregation.

5-memberensemble
continuesthrough
year;daily GPCP
precip, applied.

Sameas for 1997.

Sameasfor 1997.

Sameasfor 1997.

Sameasfor 1997.

SoilInit ensembles

16-memberensemble
of 3-month simu-
lations, beginning
on June 1. Initial

land conditions taken
from GPCP ensemble.

Sameasfor 1997.

Sameasfor 1997.

Sameasfor 1997.

Sameasfor 1997.

Table 1: Summaryof runs usedin this study.
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Figure 1: Schematic of the strategy used for the GPCP model runs, which

provide the initial conditions for the SoilInit ensembles.
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June,

1999

July,

1999

Aug.,

1999

DIFFERENCES DUE TO SOIL MOISTURE INITIALIZATION

"Soillnit" ensemble mean minus "AMIP" ensemble mean

(Differences shown only where significant at 95% level)
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Figure 3: Impact of soil moisture initialization on the monthly averaged soil

moisture (left column), precipitation (middle column) and temperature (right

column).
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"Soillnit" ensemble mean minus "AMIP" ensemble mean

(Differences shown only where significant at 95 % level)
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Figure 4: Impact of soil moisture initialization on JJA precipitation for each

of the five years considered in the experiment.
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Figure 5: Composite maps showing the locations where soil moisture initial-

ization had a significant impact, at least once during the 5 years studied_

on soil moisture (top), precipitation (middle), and surface temperature (bot-

tom). Significance is at the 99% level.
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Figure 6: Factors affecting strength of land-atmosphere feedback. Top: char-

acteristic size of initial soil moisture anomaly, as measured by the standard

deviation of total June 1 soil water (in units of degree of saturation). Mid-

dle: Product of the mean net radiation and the slope of the evaporation ratio

versus soil moisture relationship (in4X_j/m2). Bottom: Convective fraction

(dimensionless).
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Figure 7: Top: Product of the three factors hypothesized to contribute to

soil moisture initialization's impact on precipitation. Bottom: Composite

map showing the locations where soil moisture initialization had a significant

impact, at least once during the 5 years studied, on precipitation. Significance

is at the 99% level. 50



IMPACT OF SOIL MOISTURE INITIALIZATION ON FORECAST ACCURACY

("Case study"; anomalies shown only where ensemble differences are significant at 95%)

1997 JJA PRECIPITATION 1997 JJA TEMPERATURE

ANOMALIES (mnffday) ANOMALIES (K)

Average from
SoillnitEnsemble

Average from
AMIP Ensemble
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Figure 8: Comparison of JJA precipitation and temperature forecasts with

observations in 1997. Top: forecasted anomalies obtained with SoilInit en-

semble, that is, with specific soil moisture initialization. Middle: forecasted

anomalies obtained with AMIP ensemble, that is, without specific soil mois-

ture initialization. Bottom: Observed anomalies.
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IMPACT OF SOIL MOISTURE INITIALIZATION ON FORECAST ACCURACY

("Case study"; anomalies shown only where ensemble differences are significant at 95%)

2{X)l JJA PRECIPITATION 2001 JJA TEMPERATURE
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Figure 9: Comparison of JJA precipitation and temperature forecasts with

observations in 2001. Top: forecasted anomalies obtained with SoilInit en-

semble, that is, with specific soil moisture initialization. Middle: forecasted

anomalies obtained with AMIP ensemble, that is, without specific soil mois-

ture initialization. Bottom: Observed anomalies.
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Figure 10: Summary of forecast results over the two indicated regions, one in

central North America (left two columns) and one in western Asia (right two

columns). Shown in the first column of each pair of columns are the mean

JJA precipitation anomaly (in mm day -1) for the SoilInit ensemble (leftmost

bar), the mean JJA precipitation anomaly for the AMIP ensemble (middle

bar), and the observed JJA precipitation anomaly (crosshatched bar), for

each year of study. Shown in the second column of each pair of columns are

the corresponding values for the JJA temperature anomalies (in °K).
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Figure 11: Top: JJA 2001 precipitation anomalies (in mm day -1) generated

by the individual members of the SoilInit ensemble, ranked by size. The

observed precipitation anomaly is shown as the crosshatched bar. Bottom:

Same, but for June 2001 precipitation.
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